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ABSTRACT
As part of the Army's Demo III project, a sensor-based system has been developed to identify roads and to enable a
mobile robot to drive along them. A ladar sensor, which produces range images, and a color camera are used in
conjunction to locate the road surface and its boundaries. Sensing is used to constantly update an internal world model of
the road surface. The world model is used to predict the future position of the road and to focus the attention of the
sensors on the relevant regions in their respective images.  The world model also determines the most suitable algorithm
for  locating and tracking road features in the images based on the current task and sensing information. The planner uses
information from the world model to determine the best path for the vehicle along the road. Several different algorithms
have been developed and tested on a diverse set of road sequences. The road types include some paved roads with lanes,
but most of the sequences are of unpaved roads, including dirt and gravel roads. The algorithms compute various
features of the road images including smoothness in the world model map and in the range domain, and color features
and texture in the color domain. Performance in road detection and tracking are described and examples are shown of the
system in action.

1 INTRODUCTION
An autonomous vehicle intended for driving off-road (e.g., for military reconnaissance) should still be able to identify
roads and to drive along them when conditions allow. This ability will minimize terrain-based dangers and maximize
speed. Road following requires an ability to discriminate between the road and surrounding areas and is a well-studied
visual task1-5. The work described in this paper is part of the Army's Demo III project6. The requirements for the
Experimental Unmanned Vehicle (XUV) developed for Demo III include the ability to drive autonomously at speeds of
up to 60 kilometers per hour (km/h) on-road, 35 km/h off-road in daylight, and 15 km/h off-road at night or under bad
weather conditions. The control system for the vehicle is designed in accordance with the 4D-Real-time Control System
(RCS) 7 architecture, which divides the system into perception, world modeling, and behavior generation subsystems.

The XUV has two principal sets of sensors for navigation, as shown in Figure 1. On the left, outlined in white, is a Ladar
system that produces range images at about 20 Hz. Mounted above the Ladar is a color camera that produces images at
up to 30 Hz. On the right are a pair of stereo color cameras, and a set of stereo FLIR cameras.

Figure 1. The Demo III XUV
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Given the need for relatively high-speed driving, the sensory processing subsystem must be able to update the world
model with current information as quickly as possible. It is not practical to process all images completely in the time
available, so focusing attention on important regions is required. This is done by trying to predict which regions of future
images will contain the most useful information based on the current images and the current world model. Prediction is
carried out between images, across images, and between the world model and each type of image.
Prediction and focus of attention are of special interest to robotic systems because they frequently have the capability to
actively control their sensors8. The goal of focusing attention is to reduce the amount of processing necessary to
understand an image in the context of a task. Usually, large regions either contain information of no interest for the task,
or contain information that is unchanged from a previous view. If the regions that are of interest can be isolated, special
and perhaps expensive processing can be applied to them without exceeding the available computing resources.

One way that “focus of attention” systems can work is by looking for features defined by some explicit or implicit
model. The search may take many forms, from multi-resolution approaches that emulate human vision's peripheral and
foveal vision, to target-recognition methods that use explicit templates for matching 9-14. Once a set of attention regions
has been detected, a second stage of processing is often used to further process them or to rank them. This processing
may require more complex algorithms, but they are applied only to small regions of the image.

Another way focus of attention systems can work is by selecting the most appropriate sensory processing algorithm for
achieving a given task. Criteria for selecting the most appropriate algorithm may include environmental factors
(weather, day or night, road condition, road class, etc.) and the type of processing to be performed on the sensed
information. For example, if the task is daytime driving on highways, the sensory processing system must find lane lines
in daylight. A rule-based system, for example, would use these constraints to select the most appropriate algorithm to
perform the task.
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Figure 2. Lane model in a road with lanes
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Figure 3.  Boundary model of a road



In this paper, we describe a road and lane detection and tracking method that falls within the above general description,
but differs from previous approaches in using multiple sensor types that interact to locate and identify roads. The way
each sensor is used in conjunction with another sensor and with the functions of vehicle's internal world model is the
focus of the paper.  Further, a world model containing the system's current best guess about the state of the world and the
task is used to predict where roads should appear and how they should look to each of the sensors. The world model also
helps determine the most appropriate algorithm to apply to the sensor data.

2 THE WORLD MODEL FOR ROAD AND  LANE TRACKING

We briefly introduce the world model we use for road extraction and tracking. The world model contains a
representation, or map, of the current state of the world surrounding the vehicle and is updated continually by the
sensors. We use a modified occupancy grid representation15, with the vehicle centered on the grid, and the grid tied to
the world. The world model scrolls under the vehicle as the vehicle moves about in the world. The world model is the
system's internal representation of the external world. It acts as a bridge between sensory processing and behavior
generation by providing a central repository for storing sensory data in a unified representation, and decouples the real-
time sensory updates from the rest of the system. The world model process has three primary functions in the road and
lane following tasks.

1. To create models of road elevation, road boundaries, and lanes within the road, and to keep them current and
consistent. In this role, it updates elevation and variance of elevation in maps and road/lane models (see Figure 2.,
Figure 3) in accordance with inputs from the sensors. It also assigns (multiple) confidence factors to the models and
all map data, and adjusts these factors as new data are sensed.

2. To generate predictions of expected sensory input based on the current state of the world and estimated future states
of the world. For the road boundary and lane marker following application, we assume that the location of the road
boundary or lane marker in the image domain changes very little (less than 10 pixels) between successive images.
Based on the road model, the predicted road boundary or lane is projected onto the current image. This provides the
focus of attention region for the sensory processing module.

3. To determine the most suitable algorithm for the sensory processing module based on the current state of the world
and the task. The system’s state is updated every cycle based on prior knowledge and the state of the world model16,
For lane marker following, the lane detection algorithm is used to find lane markers, and the edges most likely
correspond with each lane marker are used to update the lane model (see section 3.1). For road following, the road
detection algorithm (see section 3.2) is used to segment the road.

Figure 4. Initial road boundary. Blue points are road edges, green points show the model fitted to the boundary



3 SENSORY PROCESSING FOR ROAD AND LANE TRACKING

3.1 Lane tracking algorithm

The algorithm used for lane tracking is similar to that described in Schneiderman and Nashman17. The stages of the
algorithm involve first predicting the locations of lane markers, then extracting and classifying edges, and, finally,
updating the lane model. The lanes are represented by 2D models in the image plane. An initial approximate model of
the lane markers is determined by fitting a second order polynomial (Equation 1) to the set of edge points labeled as lane
marker points.
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The parameters ,,, 321 ccc  determine the shape and position of the lane marker model. We assume that the vehicle is

located on the road and that some lane markers appear in the image. First, we project the vehicle’s heading direction into
the image, as a line through the center of the vehicle and up through the image. For each projected point in the vehicle
heading line, we search to the right in each row  to find the pixel with the highest intensity. This pixel is labeled as a lane
marker. Once the initial model is constructed, it is used to predict where the lane marker will appear in the next video
image.

In each new image, edge extraction is performed only in the focus area, a square box 10 _ 10 pixels in size that is
predicted to contain lane markers. For every point in the focus area, the edge magnitude and gradient are computed using
3 _ 3 Sobel operator. The edge in each image row that has approximately the same gradient direction as predicted by the
lane marker model and has the greatest magnitude is selected and classified as a lane marker. The blue data points in
Figure 4. are classified as lane markers.

Using the points classified as lane markers, a second order polynomial model of each lane is updated recursively, using
the square root information filter (SRIF)18.  The algorithm is outlined below.

Given an over-determined linear equation:
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 is the error in measurement.  QR decompose A  (using householder transformation):
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Q  is an orthonormal matrix and R  is an upper triangular matrix.  Since Q  is orthonormal, its inverse is simply itself:
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Multiply both sides of  (3) by 1−Q :
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For fitting a quadratic polynomial, the dimension of R  is )3( ×n  where n  is the number of data points.  Since R  is

upper triangular, only the first 3 rows contain non-zero elements.  Letting 33×R  denote the upper matrix and letting
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Since Q  is orthonormal:
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Only the first term above depends on x
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, which can be solved from the system by backsubstitution directly - 3x3R  is

already triangular.  The error of the fit is:
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The least squares solution is updated with next batch of data, 22 , bA
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where [ ]1,...,0∈  is the exponential weight19.  The total error is:

 (10)  2eee total
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3.2 Road tracking algorithm

Our algorithm for road detection uses a statistical classification method applied to data from both the ladar sensor and
the color camera.  The algorithm has three steps:

1. Classification of the road surface based on the variance of elevation in the world model map. When ladar data are
inserted into the map, each ladar point recursively updates the elevation and variance of elevation20 in the map cell
to which it projects. In each map cell, variances either within a single cell or across a small region of neighboring
cells are computed.  If the variance of the elevation is small, the map cell is classified as possibly being road and the
ladar point data is classified as a possible road point.

2. Road verification based on color information. Each laser point that was classified as a possible road point in step 1
is projected into color image domain. If the projected color region is classified as road in the color domain (Figure
5) the confidence of “roadness” of the map cell is increased. The algorithms for classification based on color will be
described in section 3.3.

Figure 5. Color image and projected area of both ladar and color label as road



3. Update the road confidence of each map cell. Road segments whose classifications as road were supported in the
color image have their confidence increased. Those that are not verified have their confidence reduced. When the
road confidence rises above a threshold, the cell is confirmed as road (see Figure 6).  If the confidence drops to 0,
the road label is removed.

Figure 6.  The 3D display of the map of the world  model. Green is for road. Red is for obstacle and yellow is
unknown.

This sequence of operations is repeated for each new ladar image and the corresponding color image. Since the ladar and
color camera are mounted on the vehicle, some of the projections used in steps one to three are fixed, and can be
computed offline.

There are two kinds of projections: Ladar data are projected into the world model map, and color images are projected
into the map.  Each sensor is at a known base position on the vehicle, and has a known sensor coordinate system. The
vehicle is moving, however, and the world model maintains its representation in world coordinates, fixed on the ground.
Thus, all coordinates must be converted from sensor to vehicle, and from vehicle to world. Some of the sensors also
move relative to their base position. The ladar, for instance, may rotate about its horizontal axis (tilt). Finally, the
navigation sensor, color camera and ladar sensor sample at different times. We use linear interpolation of readings from
the vehicle’s navigation system to obtain the positions of the color camera and ladar sensor each time the sensor data are
read.

The ladar-to-world-model coordinate transformation includes the ladar-to-vehicle and vehicle-to-world-model
transformations.  The projection from the ladar to the color image includes the world-model-to-ladar and world-model-
to-image transformations.  The ladar to color image transformation is particularly important for achieving accurate
registration between ladar features and image features.  This transformation is not invertible because of the lack of depth
information in the camera image.  In order to register the ladar and camera images, we first calibrated the camera's
internal parameters using J. Bouguets's Matlab toolbox21. The external orientation between the camera and ladar was
obtained by correlating corresponding points imaged by each device over a number of scenes and then computing a
least-squares fit to the transformation according to the procedure described in{Elstrom, Smith, et al. 1998
ELSTROM1998A /id}.  Results are shown for a sample scene in Figure 7.
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Figure 7. The mapping between Ladar data and color data

3.3 Road detection using color and ladar

Our road segmentation system works by combining depth information from a laser range-finder and color and texture
image cues to segment ill-structured dirt, gravel, and asphalt roads as input to shape analysis module.  We frame road
segmentation as a classical classification problem in which we wish to identify small patches over the field of view as
either road or non-road on the basis of a number of properties, or features, that we compute from them.  These features
are non-geometric: image location is not considered for segmentation, only local image properties.  For data, a large
number of registered laser and camera images were captured at frame-rate while driving 8-24 km/h on a variety of rural
roads over the course of 73 minutes.  A random sample consisting of approximately 0.1% of the road images
(downsampled to 360 x 240) were manually segmented.

Features were computed at 10-pixel intervals horizontally and vertically over small (31 x 31) subimages.  Feature types
were as follows:

(1) Color: an “independent” color histogram22 consisting of 8 bins per channel.  This feature was chosen on the
assumption that roads would be more-or-less consistent in their mix of colors—generally brown or gray—while the
background is expected to exhibit more green and blue colors to allow discrimination.

(2) Texture: odd- and even-phase responses of a bank of Gabor filters23 histogrammed over three wavelengths and eight
equally-spaced orientations.  This feature was selected in order to characterize the magnitude and dominant direction of
texturedness at different scales, with the expectation that the road is more homogeneous or anisotropic (e.g., it might
contain tracks and ruts) than bordering plants.

(3) Height/bumpiness: the mean and variance along the vertical axis relative to the vehicle support surface of laser points
projecting to the local camera subimage.  Height should allow protruding objects such as bushes and trees to be
eliminated regardless of their visual appearance, and smoothness is included because roads should be locally flat, while
tall grass and loose rocks are bumpier.

Two approaches to modeling road appearance were used: in one, a single neural network was trained on all combinations
of the features (color alone, color plus texture, texture plus height/bumpiness, etc.) for the sample images.  A
combination of color, texture, and height/bumpiness was found to exhibit the best mix of accuracy (approximate 93%)
and consistency.  Our other approach was to generate a small set of road models by training separate neural networks on
labeled feature vectors clustered by road “type.”  By first classifying the type of a novel road image, an appropriate
second-stage classifier was selected to segment individual pixels.  This improved segmentation accuracy over the single-
model approach while still retaining good generality.  More information is available in reference24.



4 CONCLUSIONS

A system has been described that detects and tracks lane markers and road boundaries using color vision and ladar. The
system makes use of a continually updated world model to predict where the sensors should focus their attention to
ensure that the vehicle can drive fast enough. By predicting which regions of future images will contain the most useful
information based on the current world model, the complexity of sensor processing is reduced and the signal to noise
ratio of the sensor data is increased.  By dynamically selecting the most appropriate sensory processing algorithms for
achieving a given task, the system is able to track lanes and different types of road boundaries as appropriate. Therefore,
the system can track lane markers on paved roads and switch to tracking road boundaries on unpaved dirt and gravel
roads.   The system is also currently being implemented on an indoor robot for a lane marker tracking and wall following
task25.
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